

Argonne Training Program on Extreme-Scale Computing

Introduction to ATPESC

Ray Loy
ATPESC Program Director

Outline

Questions/Discussion

Motivation for ATPESC

- Today's most powerful supercomputers have complex hardware architectures and software environments
 - and even greater complexity is on the horizon on next-generation and exascale systems
- The scientific and engineering applications developed for these systems are themselves complex
- There is a critical need for specialized, in-depth training for the computational scientists poised to facilitate breakthrough science and engineering using these systems

ATPESC Overview

- Founded by Paul Messina in 2013
- Conceived as a 2-week retreat
- Renowned computer scientists and HPC experts from US national laboratories, universities, and industry serve as lecturers and guide hands-on sessions.
- Target audience: advanced doctoral students, postdocs, and early career computational scientists
- No fee to participate. Domestic travel, meals, and lodging provided.
- Competitive application process reviewed by committee
 - Must have experience in MPI and/or OpenMP and/or Data Science frameworks
 - Experience with at least one HPC system
 - Concrete plans to conduct CSE research on large-scale computers

ATPESC Website

extremecomputingtraining.anl.gov

Argonne – a part of DOE National Laboratory System

Together, the **17 DOE laboratories** comprise a preeminent federal research system, providing the Nation with strategic scientific and technological capabilities. The laboratories:

- Execute long-term government scientific and technological missions, often with complex security, safety, project management, or other operational challenges;
- Develop unique, often multidisciplinary, scientific capabilities beyond the scope of academic and industrial institutions, to benefit the Nation's researchers and national strategic priorities; and
- Develop and sustain critical scientific and technical capabilities to which the government requires assured access.

Major Scientific User Facilities at Argonne

Advanced Photon Source

Argonne Leadership Computing Facility

Argonne Tandem Linear Accelerator System

Electron Microscopy Center

Center for Nanoscale Materials

The future... Aurora Exascale System

ATPESC 2019 Venue

ATPESC 2020, 2021 – Virtual Events

Curriculum Tracks (over 100 hours of content)

- Track 1: Hardware Architectures
- Track 2: Programming Models and Languages
- Track 3: Data-intensive Computing and I/O
- Track 4: Visualization and Data Analysis
- Track 5: Numerical Algorithms and Software for Extreme-Scale Science
- Track 6: Performance Tools and Debuggers
- Track 7: Software Engineering
- Track 8: Machine Learning and Deep Learning for Science

ATPESC Computing Resources

Other ATPESC Content

- Dinner Speakers
 - https://extremecomputingtraining.anl.gov/dinner-talks/
- Tour of selected Argonne National Lab Facilities
 - https://extremecomputingtraining.anl.gov/atpesc-argonne-national-laboratory-tour/

Goals for Attendees

Talk F2F with Lecturers, other Participants, Support

Application Instructions

Eligibility

- Substantial experience in MPI and/or OpenMP programming. Equivalent experience with Data Science frameworks will also be considered.
- Experience using at least one HPC system for a reasonably complex application.
- Plans to conduct computational science and engineering (CSE) research on large-scale computers.

Application Components

- Statement of Purpose
- Curriculum Vitae (CV)
- Letter of Recommendation (LOR)

The Key to success

Provide details

The #1 problem a reviewer faces is trying to guess your qualifications when the materials are not clear.

1. Substantial experience in MPI and/or OpenMP programming. Equivalent experience with Data Science frameworks will also be considered.

- Weak statements
 - "I took a class on MPI"
 - "I ran a code that uses MPI"
- Stronger statements
 - "I work on the ____ code. I implemented, tested, and benchmarked the message-passing routines for the boundary exchange of the ____ solver which has a communication pattern that communicates between ___ and the observed scaling was ___ ..."
 - "I set up the machine learning framework ____ to solve the ____ problem, using a training data set of size ____ and run on ____ nodes. This was then applied to ____ thousand data sets of size ___ ..."
- If you are part of a group-developed code or working on a community code, be specific about your individual contribution.

Experience using at least one HPC system for a reasonably complex application.

- We do not expect that you have access to a world-class system
 - University/corporate clusters are relevant
- Be clear if you are developing code and running it vs. running an existing code that you did not develop.
- What types of runs have you accomplished?
 - Core/node counts are informative
 - Did you perform scaling studies or other performance inquiries?
- What type of queuing system(s) were involved?
 - Did you construct job scripts?
 - Did you run a large campaign and employ any workflow techniques to manage jobs?

Plans to conduct computational science and engineering (CSE) research on large-scale computers.

- The training should be put to good use
- What is your current situation?
 - Are you currently part of a research effort?
 - What specific ways do you anticipate applying your ATPESC training?
- Where are you headed in your career?
 - If you are a student, what types of positions are you applying to?
 - In what ways do you expect your current work to carry over?

ATPESC 2022 Updates

- Subscribe to mailing list linked from the homepage
 - https://extremecomputingtraining.anl.gov (bottom of page)
- Direct inquiries to
 - support@extremecomputingtraining.anl.gov

Acknowledgments

Exascale Computing Project

Website: https://exascaleproject.org

This training and research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

Questions/Discussion

